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Parametric instability in a rotating cylinder of
gas subject to sinusoidal axial compression.

Part 2. Weakly nonlinear theory
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A weakly nonlinear analysis is presented of parametric instability in a rotating cylinder
subject to periodic axial compression by small sinusoidal oscillations of one of its
ends (‘the piston’). Amplitude equations are derived for the pair of parametrically
resonant (primary) inertial modes which were found to arise from linear instability
in Part 1. These equations introduce an infinity of geostrophic mode amplitudes,
representing a nonlinear modification of the mean flow, for which evolution equations
are also derived. Consequences of the total system of equations are investigated for
axisymmetric modes. Different possible outcomes are found at large times: (a) a
fixed point, representing a saturated state in which the oscillatory toroidal vortices
of the primary mode are phase-locked to the piston motion with half its frequency;
(b) a limit cycle or chaotic attractor, corresponding to slow-time oscillations of the
primary mode; or (c) exponential divergence of the amplitudes to infinity. The latter
outcome, a necessary condition for which is derived in the form of a threshold
piston amplitude for divergence, invalidates the theory, inducing a gross change
in the character of the flow and providing a route out of the weakly nonlinear
regime. Non-zero fixed-point branches arise via bifurcations from both sides of
the linear neutral curve, where the basic flow changes local stability. The lower-
amplitude branch is shown to be unstable, while the upper one may lose local
stability, resulting in a Hopf bifurcation to a limit cycle, which can subsequently
become aperiodic via a series of further bifurcations. Typically, during the resulting
oscillations, whether periodic or not, the perturbation first grows from small amplitude
owing to basic-flow instability, then nonlinear detuning of the parametric resonance
causes decay back to small amplitude in the second half of the cycle, which then
restarts.

1. Introduction
Growth of inertial waves due to externally imposed sinusoidal perturbations of

rotating flow has frequently been observed. For instance, experiments were reported
by Fultz (1959), McEwan (1970), Manasseh (1992) and others in the case of direct
resonance, i.e. when the external forcing frequency is close to that of an inertial mode,
whereas studies by Malkus (1989) and Eloy, Le Gal & Le Dizés (2003) concern the
elliptic instability, which can be interpreted theoretically (Waleffe 1990) as being due
to a parametric inertial-wave resonance. The end result of direct resonance may lie
in the linear regime if the forcing is sufficiently weak compared with the viscous
damping which then limits modal growth, but otherwise nonlinearity intervenes, as
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is always the case for a parametric instability. McEwan (1970) and Malkus (1989)
observed nonlinear effects, followed by wave breaking and transition to turbulence,
whereas Eloy et al. (2003) found different parameter regimes in which the unstable
mode either (a) saturated at finite amplitude, (b) underwent breaking and transition
to turbulence, then relaminarized, leading to a periodic cycle of laminar and turbulent
flows, or (c) became turbulent and remained so.

To help explain his experimental results, McEwan (1970) proposed a theoretical
model of a directly resonant inertial mode, which, though heuristic and relatively
crude, contains many of the elements we will find from the detailed analysis of
this paper for a different problem involving parametric instability. McEwan’s model
consists of a pair of differential equations for the time evolution of the amplitude and
phase (relative to the external forcing) of the resonant mode. Nonlinear interaction
of the oscillating mode with itself leads to mean forcing, hence modifying the mean
flow (solid-body rotation in the absence of nonlinearity) as described by Busse
(1968). This axisymmetric modification of the mean flow (modelled by McEwan
as a single parameter representing the average change in the rotation rate), shifts
the frequency of the mode a little, a shift which was later quantified in the
perturbation analysis of Gunn & Aldridge (1990). The resulting detuning of the
resonance causes the modal phase relative to the external forcing to evolve, which
in turn alters the growth of the modal amplitude, even producing modal decay if
the phase becomes such that energy is extracted from the modal oscillations. As
we shall see, our detailed asymptotic analysis leads to a similar physical picture of
the effects of nonlinearity. The modification of the mean flow owing to nonlinearity
appears in the analysis as an infinity of zero-frequency (geostrophic) modes, for which
amplitude equations are derived in addition to those of the primary modes. It seems
likely that the scenario described above is generic to problems involving resonant
(direct or parametric) growth of primary modes in which there are zero-frequency
(or nearly so) modes (the geostrophic ones in our case) which undergo nonlinear
mean forcing by the primary mode and whose existence modifies the primary-mode
frequency.

In the case of the elliptic instability, Waleffe (1989) undertook a weakly nonlinear
analysis of a rotating, slightly elliptic, infinite cylinder of inviscid fluid. He obtained
a set of evolution equations for the primary mode amplitude and the mean-flow
correction induced by nonlinear forcing by the primary mode, in the manner discussed
above. Although Waleffe’s problem and ours are not the same, for instance the unstable
mode is different, his amplitude equations have the same form as ours when viscosity
is neglected. The equations are integrable and, depending upon the initial conditions,
the solution is either periodic or goes from a fixed point back to the same point
as time runs between ±∞. In particular, if the perturbation is infinitesimal to begin
with, it grows from the linear regime owing to instability, but subsequently reaches
a maximum and then decays back to zero. This unexpected (given the instability
of the basic flow) behaviour is symptomatic of the singular nature of the inviscid
problem, other aspects of which were discussed in Part 1 (Racz & Scott 2008). Waleffe
(1989) attempted to allow for viscosity by the expedient of adding linear damping
terms to the inviscid amplitude equations, without carrying out the viscous analysis
required to confirm such an approach. As we shall see, this misses a nonlinear term
which requires viscosity for its existence and also does not allow for the infinity of
geostrophic degrees of freedom which arise when volumetric viscous damping of the
geostrophic flow is included.
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Again for the elliptic instability, the Appendix of Mason & Kerswell (1999)
gives a weakly nonlinear analysis of a finite cylinder allowing for viscosity,
results of which are compared with their numerical work. Rather than deriving
amplitude equations, they suppose from the start that the primary mode saturates
to constant amplitude. This is equivalent to restricting attention to the fixed points
of the amplitude equations and excludes other outcomes, such as a limit cycle, or
divergence to infinity which, as we shall see, can also arise. Furthermore, the flow
considered by Mason & Kerswell in both their numerical and analytical studies
satisfies theoretically convenient, but unrealistic, stress-free boundary conditions
on the endwalls of the cylinder. As they recognize, no-slip conditions lead to
boundary layers on the endwalls, which alters the problem significantly, changing
not just the detailed values, but the order of magnitude of the geostrophic modal
damping and mean forcing, quantities which are at the physical heart of the
problem.

As in Part 1, the particular problem studied is that of flow inside a finite cylinder
of radius a, rotating (along with its endwalls) at angular velocity Ω about its axis,
one of whose ends (the piston) executes small sinusoidal oscillations of frequency
ω0 and hence subjects the gas inside the cylinder to periodic compression. Linear
instability was studied in Part 1, where it was found to take the form of growing
pairs of inertial modes satisfying a parametric resonance conditions. In this paper,
we allow for weak nonlinearity and derive coupled amplitude equations for the
primary mode pair and the geostrophic modes which arise owing to nonlinearity,
as discussed earlier. Section 2 introduces the asymptotic expansion of the mode
amplitudes and gives some properties of the nonlinear interaction coefficients which
are used later. For simplicity, and because we have fewer quantitative results for
the non-axisymmetric case, attention is restricted to axisymmetric primary modes
in the remainder of the paper (apart from Appendix C, which gives the amplitude
equations for the non-axisymmetric case and briefly discusses some consequences).
Section 3 derives the amplitude equations, and § 4 examines their consequences.
Throughout, the reader is assumed to be familiar with the formulation and notation
of Part 1. References to equations in Part 1 take the form (I.n.nn), e.g. (I.3.9) refers
to equation (3.9) of Part 1. Similar notation will be used to refer to sections and
figures in Part 1. Appendices D to H give details of the calculations and are available
as a supplement to the online version of the paper, or from the JFM Editorial
Office.

Before proceeding further, although they were discussed in Part 1, geostrophic
modes are especially important in this paper and it is perhaps best to recall their
properties briefly. A geostrophic mode µ has zero frequency (ω(µ) = 0 in the notation
of Part 1) and the associated flow (u(µ)(X)) is two-dimensional, independent of
the axial coordinate Z (formally, the axial index mµ = 0) and taking place in planes

perpendicular to the axis, i.e. u(µ)
Z = 0. Any such two-dimensional flow can be expressed

as a linear combination of geostrophic modes and is steady according to linear inviscid
theory without piston motion. The simplest geostrophic modes, and most important
in the present paper, are axisymmetric (azimuthal order nµ = 0). Their only non-

zero velocity component is u
(µ)
θ (r), corresponding to differential rotation of cylinders

of fluid of constant r about the Z-axis (recall figure I.2a). Although individual
modes appear naturally in the analysis via their complex amplitudes, it is sometimes
more enlightening to sum contributions from all geostrophic modes and refer to the
geostrophic flow as a whole.



294 J.-P. Racz and J. F. Scott

2. Asymptotic expansion and nonlinear interaction coefficients
As in Part 1, the perturbation to the basic flow is written in terms of the basis set

of inviscid inertial-mode eigenfunctions as

u =
∑

µ

Bµ (t) u(µ) (X), (2.1)

and the modal amplitudes evolve according to (I.3.9):

dBµ

dt
+ iω(µ)Bµ =

d

dt

{(
1 −

(
h

h0

)2
)∫

u
(µ)∗

Z uZ d3X

}
︸ ︷︷ ︸

Piston motion

+Re−1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∫

r=1

(
u(µ)∗

⊥ +

(
h

h0

)2

eZu
(µ)∗

Z

)
· (n · ∇u) d2X

︸ ︷︷ ︸
Sidewall viscous term

+

∫
Z=0,h0

((
h0

h

)2

u(µ)∗

⊥ + eZu
(µ)∗

Z

)
· (n · ∇u) d2X

︸ ︷︷ ︸
Endwall viscous term

+

∫
u · D

(
u(µ)∗

⊥ +

(
h

h0

)2

eZu
(µ)∗

Z

)
d3X

︸ ︷︷ ︸
Volumetric viscous term

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+

∫ ⎡
⎣u · (u · ∇)︸ ︷︷ ︸

Nonlinearity

+ U · (u · ∇) + u · (U · ∇)︸ ︷︷ ︸
Effects of viscosity on the basic flow

⎤
⎦

×
(

u(µ)∗

⊥ +

(
h

h0

)2

eZu
(µ)∗

Z

)
d3X . (2.2)

Consider an unstable pair of modes, µ+, µ−, growing from the linear regime until it
is affected by nonlinearity. For reasons that will become apparent later, nonlinearity
intervenes when the amplitude of the primary modes reaches O(ε1/2) (recall from
Part 1 that ε is a small parameter representing the amplitude of piston oscillations
and on which the asymptotic analysis is based), hence the expansion of the modal
amplitudes in powers of ε1/2:

Bµ = ε1/2B [1]
µ + εB [2]

µ + ε3/2B [3]
µ + · · · , (2.3)

where the leading-order term contains only the primary modes, i.e. B [1]
µ = 0 unless

µ =µ+ or µ = µ− (and their conjugates in the non-axisymmetric case). Equation (2.3)
is used in the exact amplitude evolution equation (2.2) and successive powers of
ε1/2 examined. At leading order, effects of piston-motion, viscosity and nonlinearity,
represented by the right-hand side of (2.2), do not contribute and so

B [1]
µ = Aµ(T ) exp(−iω(µ)t) (2.4)

expresses oscillations of the primary modes at their natural inviscid frequencies, with
amplitudes Aµ± = A±(T ) which are functions of the slow time T = εt .
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Evolution equations for the A± are obtained, as usual, by elimination of secularity
at higher order. As we shall see, no secularities occur at O(ε) (which is the reason why
the perturbation amplitude can grow to O(ε1/2), rather than O(ε), before nonlinearity
becomes significant) and the amplitude equations arise at O(ε3/2). The right-hand side
of (2.2) contributes at these orders and its asymptotic expansion is then required. The
linear terms on the right-hand side of (2.2) have already been treated in Part 1 and
it remains to express the nonlinear term. Using (2.1), (2.3) and h/h0 = 1 + O(ε), this
term has the expansion

∫
u · (u · ∇)

(
u(µ)∗

⊥ +

(
h

h0

)2

eZu
(µ)∗

Z

)
d3X = iε

∑
ν1ν2

Λµν1ν2
B [1]

ν1
B [1]

ν2

+ 2iε3/2
∑
ν1ν2

Λµν1ν2
B [1]

ν1
B [2]

ν2
+ · · · , (2.5)

which provides the nonlinear contributions at O(ε) and O(ε3/2), where

Λµν1ν2
= − 1

2
i

∫ (
u

(ν1)
i u

(ν2)
j + u

(ν2)
i u

(ν1)
j

)∂u
(µ)
i

∗

∂Xj

d3X, (2.6)

with a summation convention over repeated indices, defines a set of nonlinear
interaction coefficients which play an important role in the present paper. Note
that Λµ ν1ν2

is symmetric with respect to its last two indices.
Λµ ν1ν2

can be expressed in terms of integrals of products of Bessel functions
(see Appendix D for details). In the process, it is found to be real and zero
unless

nµ = nν1
+ nν2

, mµ = ±mν1
± mν2

, (2.7)

there being four choices of sign in the second condition. These conditions constrain
possible nonlinear interactions. Another useful property of the Λµν1ν2

(also derived in
Appendix D) is

Λµνν∗ = 0, mµ = 0 (2.8)

for any geostrophic mode µ (i.e. mµ = 0, as indicated explicitly in (2.8)) and where,
as in Part 1, ν∗ denotes the modal conjugate of ν. A result equivalent to (2.8) was
derived by Greenspan (1969) for a general container. As we shall see in later analysis,
(2.8) disallows a number of nonlinear interactions involving geostrophic modes which
would otherwise significantly modify the dynamics. Note that, like the linear coupling
matrices Cµν and Dµν introduced in Part 1, the Λµν1ν2

depend only on the cylinder
aspect ratio h0.

3. Amplitude equations for axisymmetric primary modes
From here on, we restrict attention to the axisymmetric case. As we saw in Part 1,

the pair then consists of conjugate modes µ+ and µ− = µ∗
+ having the same non-

zero axial order m+, frequencies ω− = − ω+ which satisfy the resonance condition
2ω+ = ω+ − ω− = ω0 + O(ε), and leading-order amplitudes related by A− = A∗

+.
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3.1. Order ε

At O(ε), only the nonlinear term contributes to the right-hand side of (2.2) (the linear
terms are O(ε3/2)) and, using (2.4) and (2.5), we have

∂B [2]
µ

∂t
+ iω(µ)B [2]

µ = i
∑

ν1,ν2=
µ+, µ∗

+

Λµν1ν2
Aν1

Aν2
exp−

(
i
(
ω(ν1) + ω(ν2)

)
t
)
, (3.1)

where the notation indicates that the sum, representing O(ε) forcing due to quadratic
interactions between the primary modes, is to be taken by letting ν1 and ν2 run over
µ+ and µ∗

+. On the other hand, the mode µ, whose O(ε) amplitude evolves according
to (3.1), is not restricted to be one of the primary modes. The four terms in the sum of
(3.1) are of two types: those with ν1 = ν2 have frequencies ±2ω+ (second harmonic),
while those with ν1 = ν∗

2 are of zero frequency (steady on the fast time scale). The
coefficient Λµν1ν2

= 0 unless (2.7) is satisfied, so only the two families nµ =mµ =0 and
nµ =0, mµ =2m+ are subject to forcing.

The solution of (3.1) is

B [2]
µ = Aµ(T ) exp(−iω(µ)t)+

∑
ν1,ν2=
µ+, µ∗

+

Λµν1ν2
Aν1

Aν2

ω(µ) − ω(ν1) − ω(ν2)
exp
(
−i
(
ω(ν1) + ω(ν2)

)
t
)
, (3.2)

where Aµ is the next-order correction to the leading-order slowly varying amplitude
Aµ and the sum is zero unless nµ = mµ = 0 or nµ = 0, mµ = 2m+. If mµ = 0, ω(µ) = 0
and there is an apparent division by zero in (3.2) when ν1 = ν∗

2 , reflecting a potential
secularity of the solution of (3.1). However, according to (2.8), the corresponding
forcing terms in (3.1) are in fact zero (i.e. there is no mean forcing of geostrophic
modes at this order, a result obtained by Greenspan (1969) for a general container in
the absence of viscosity and piston motion) and the secularity that would otherwise
occur is avoided. In consequence, terms with ν1 = ν∗

2 should be dropped from the
sum in (3.2) when mµ = 0 and their absence taken into account when interpreting
later equations which inherit the apparent divisions by zero. As noted earlier, lack of
secularity at this order is the reason why the mode pair grows to amplitude O(ε1/2)
before nonlinearity makes itself felt.

Whereas (3.2) represents a small correction for the primary modes, because they are
already present at leading order, it is asymptotically dominant for all other modes.
According to (3.2), the O(ε) flow is a superposition of free inertial-mode oscillations
with amplitudes Aµ and the response to quadratic forcing of modes in the families
nµ =mµ = 0 and nµ = 0, mµ = 2m+. For geostrophic µ, ω(µ) = 0 and the first term
in (3.2) is steady on the fast time scale, representing an O(ε) modification of the
mean flow with the potential to affect the primary mode dynamics as in Gunn &
Aldridge (1990). As we shall see shortly, the Aµ of the particular geostrophic family
nµ =mµ = 0 (axisymmetric, as well as geostrophic) do indeed appear in the amplitude
equations of the primary modes. In consequence, modes with nµ = mµ =0 play an
important role in this paper. Note that, although the first term in (3.2) appears as
unforced here, amplitude equations for the Aµ (derived in § 3.3 for geostrophic µ)
arising at O(ε2) show that it is, in fact, the consequence of nonlinear forcing of O(ε2)
acting over long times of O(ε−1).
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3.2. Order ε3/2

At this order, (2.2) gives

∂B [3]
µ

∂t
+ iω(µ)B [3]

µ = Ψ L
µ + Ψµ

NL − dAµ

dT
exp(−iω(µ)t), (3.3)

where the final term comes from taking the time derivative of (2.4), while Ψ L
µ and

Ψ NL
µ arise, respectively, from the linear and nonlinear terms on the right-hand side

of (2.2). The linear terms were treated in § 4.1 of Part 1 and the results carry over
directly. Thus, Ψ L

µ is the sum of the right-hand sides of (I.4.5)–(I.4.7), divided by δε.

As regards Ψ NL
µ , using (3.2) in (2.5), we obtain

Ψ NL
µ = 2i

∑
λ

ν=µ+, µ∗
+

ΛµνλAνAλ exp
(
−i
(
ω(ν) + ω(λ)

)
t
)

+
1

2
i

∑
ν1,ν2,ν3=
µ+, µ∗

+

Fµν1ν2ν3
Aν1

Aν2
Aν3

exp
(
−i
(
ω(ν1) + ω(ν2) + ω(ν3)

)
t
)
, (3.4)

where

Fµν1ν2ν3
= 4

∑
λ

Λλν1ν2
Λµν3λ

ω(λ) − ω(ν1) − ω(ν2)
(3.5)

is a set of real cubic-interaction coefficients and the notation λ has been used in (3.4)
and (3.5) to emphasize that the sum over λ includes all modes, whereas the ν are
restricted to the mode pair µ+, µ∗

+. Both Ψ L
µ and Ψ NL

µ , occurring in (3.3), consist of
a sum of oscillatory exponentials in t and we now look for resonant terms (i.e. those
with frequency ωµ + O(ε)) to derive the amplitude equations of the primary modes
as non-secularity conditions for µ = µ+ and µ = µ∗

+. That is, the sum of all resonant
terms should be zero, otherwise the solution of (3.3) will be secular.

Resonant terms in Ψ L
µ were identified in Part 1, leading to the linear amplitude

equations (I.4.12) and (I.4.13). Here, the results of Part 1 are simply carried over into
the nonlinear amplitude equation below. As regards Ψ NL

µ with µ = µ+, three terms in
the second sum of (3.4), namely ν1 = ν2 = µ+ and ν3 =µ∗

+ and the two permutations
of these values, contribute the resonant term iG|A+|2A+e−iω+t , where

G = 1
2
Fµ+µ+µ+µ∗

+
+ Fµ+µ+µ∗

+µ+
, (3.6)

and we have used Fµν1ν2ν3
= Fµν2ν1ν3

(which follows from (3.5) and symmetry of Λ with
respect to its last two indices). The first sum in (3.4) with µ = µ+ yields resonance
when ν = µ+ and λ is a mode with ω(λ) = 0, i.e. λ is geostrophic (mλ = 0). Since,
according to (2.7), Λµ+µ+λ = 0 unless nλ = 0, we obtain the resonant contribution
2iA+ exp(−iω+t)

∑
σ∈M Λµ+µ+σ Aσ , where M denotes the family of axisymmetric,

geostrophic modes, nσ = mσ = 0. Collecting together the linear resonant terms
identified in Part 1 and the non-linear ones just described, the non-secularity condition
for µ =µ+ gives the primary-mode amplitude equation

dA+

dT
= iω+Ce−i∆T A∗

+ +

(
2i
∑
σ∈M

Λµ+µ+σ Aσ − ε−1Re
−1/2

d+

)
A+ + iG |A+|2 A+, (3.7)

where, among the notation inherited from Part 1, C = Cµ+µ∗
+

< 0 is the piston-motion

coupling coefficient of the mode pair, ∆ = ε−1(ω0 − 2ω+) is a detuning parameter
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expressing the scaled departure of the piston frequency from parametric resonance,
Re is the Reynolds number (of order ε2, as in Part 1), and d+ is the complex modal
damping coefficient given by d+ = dµ+

and (I.4.10). Similar reasoning applied to (3.3)
with µ = µ∗

+ yields the conjugate of (3.7). In writing (3.7), we suppose there are no
secular terms other than those identified above. Equation (3.7) and its conjugate are
nonlinear generalizations of the linear mode-pair equations of Part 1. Note that, since
M represents modes with n= m =0, which are real, the amplitudes Aσ in (3.7) are
also real, as are the coefficients ω+C, Λµ+µ+σ and G. Expressions for the nonlinear
coefficients Λµ+µ+σ and G can be found in Appendix A.

The linear terms on the right-hand side of (3.7) express the piston-motion and
viscous effects already present in Part 1. The sum over Aσ arises from the first term in
(3.2) and represents the modification of the primary-mode dynamics by axisymmetric
geostrophic modes discussed earlier. Since the coefficient 2i

∑
σ∈M Λµ+µ+σ Aσ is purely

imaginary, it can be thought of as inducing a small shift in the frequency of the primary
mode equal to −2ε

∑
σ∈M Λµ+µ+σ Aσ . Note that non-axisymmetric, geostrophic modes

λ have been excluded by Λµ+µ+λ = 0, i.e. they do not have the correct spatial structure
to interact with the primary mode. The final term in (3.7) originates from the sum in
(3.2) and corresponds to cubic interactions of the primary mode with itself. It has the
familiar Landau form with an imaginary Landau constant, iG. Being imaginary, this
term can also be interpreted as a nonlinear correction to the primary-mode frequency,
this time owing to the primary mode itself.

3.3. Order ε2

Since the geostrophic mode amplitudes appear in the primary-mode equation (3.7),
we must go to O(ε2). This requires more precise asymptotics than we have required
so far. To this end, let σ be a geostrophic mode (not necessarily axisymmetric), then
(2.2) leads to the exact (no asymptotics) equation

dBσ

dt
+ Re−1K (σ )2Bσ = Re−1

(
h0

h

)2 ∫
Z=0,h0

u(σ )∗ · (n · ∇u) d2X

+

∫
[u · (u · ∇) + U · (u · ∇) + u · (U · ∇)]u(σ )∗

d3X (3.8)

where, in deriving this result from (2.2), the following properties of geostrophic
modes have been used: ω(σ ) = 0, u

(σ )
Z =0, u(σ ) is independent of Z, and u(σ ) = 0 on

r = 1 (recall that satisfaction of no-slip on the sidewall is specific to the particular
choice of geostrophic modes made in Part 1; that choice becomes significant here).
The volumetric viscous term (appearing on the left-hand side of (3.8)) has also been
rewritten using (I.2.12), (I.A.8), (I.2.17), the divergence theorem and the boundary
conditions on u.

As a first step in the asymptotic analysis, (3.8) is first approximated, correct to
O(ε2), by replacing Re with its mean value Re and h0/h with 1. In principle, the
amplitude equations could then be derived by imposing non-secularity at O(ε2), but
it is simpler to use an equivalent fast-time averaging approach. Bσ is regarded as a
function of both the fast and slow times, t and T , and averaging with respect to t

applied to (3.8), approximated as described above. The time derivative is expressed
using 〈

dBσ

dt

〉
=

〈
∂Bσ

∂t
+ ε

∂Bσ

∂T

〉
= ε

∂〈Bσ 〉
∂T

, (3.9)
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where 〈 〉 denotes fast-time averaging and we have used the facts that: (i) the fast-
time average of a fast-time derivative is zero (an expression of non-secularity); and
(ii) fast-time averaging and slow-time differentiation commute. Taking the fast-time
average of (3.2) with µ = σ (and recalling that the ν1 = ν∗

2 terms in the sum of (3.2),
which have zero frequency and would thus appear to contribute to the average, should
be dropped, as discussed following (3.2)) gives 〈Bσ 〉 = εAσ (T ), correct to O(ε). Thus,
we obtain

ε2

(
dAσ

dT
+ ε−1Re

−1
K (σ )2Aσ

)
= Re

−1
∫

Z=0,h0

u(σ )∗ · (n · ∇〈u〉) d2X

+

∫ 〈
[u · (u · ∇) + U · (u · ∇) + u · (U · ∇)]u(σ )∗〉

d3X, (3.10)

correct to O(ε2), and we next show that the terms involving U can be neglected.
Since U arises from the basic flow, it is periodic with the piston period and can be

expressed as a Fourier series containing frequencies which are multiples of ω0. The
corresponding fast-time frequencies are multiples of 2ω+, thanks to the parametric
resonance condition ω0 = 2ω+ + O(ε). On the other hand, the first term in the
expansion of u has fast-time frequency ω+. As a result, the fast-time average of the
product of U and the leading-order term in u is zero and we must proceed to O(ε) in
the asymptotic expansion of u before obtaining a non-zero contribution to the terms
involving U in (3.10). As we saw in Part 1 (in the paragraph following (I.4.7)), U is
O(ε) within the sidewall boundary layer of thickness O(ε), outside which it is small
compared with ε provided basic-flow resonances are excluded, as we did in Part 1
and continue to do here. Thus, estimating the order of magnitude of the terms in
(3.10) involving U , they are found to be small compared with ε2 and hence negligible
to the order to which we are working. Dropping these terms, (3.10) becomes

dAσ

dT
+ ε−1Re

−1
K (σ )2Aσ

= ε−2

{
Re

−1
∫

Z=0,h0

u(σ )∗ · (n · ∇〈u〉) d2X +

∫ 〈
u · (u · ∇)u(σ )∗〉

d3X
}

, (3.11)

the embryo of an amplitude equation for geostrophic modes. The integrals on the
right-hand side of (3.11) can be understood as forcing of the given mode by: (a) the
mean viscous stress at the end walls, and (b) the mean momentum flux (analogous to
the Reynolds stress in turbulent flows) throughout the cylinder.

Asymptotic evaluation of the integrals on the right-hand side of (3.11) requires
lengthy analysis, outlined in Appendix B and detailed in the online Appendices D–H.
In the general case in which the geostrophic flow is non-axisymmetric, the result is
the amplitude equation (B 12), in which the different terms on the right-hand side
represent: (i) viscous friction, both volumetric and at the ends of the cylinder, tending
to slow the geostrophic motion; (ii) nonlinear coupling between geostrophic modes;
and (iii) nonlinear forcing of the geostrophic flow by the primary mode. Because the
forcing is axisymmetric, if the geostrophic flow is initially axisymmetric, it remains
so. Leaving aside the possibility of a secondary symmetry-breaking instability (which
would lead to spontaneous growth of non-axisymmetric geostrophic modes and
require the full equation (B 12)), we specialize to the axisymmetric case in what
follows. The result is the geostrophic amplitude equation
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dAσ

dT
= − ε−1Re

−1/2
dσ Aσ︸ ︷︷ ︸

Viscous damping

+ iCΛσµ+µ+

(
A2

+ei∆T − A∗2

+ e−i∆T
)︸ ︷︷ ︸

Nonlinearity and piston motion

+ ε−1Re
−1/2

Γσ |A+|2︸ ︷︷ ︸
Nonlinearity and

viscosity

(σ ∈ M), (3.12)

in which coupling between geostrophic modes has now disappeared. As indicated by
the annotation, the first term on the right-hand side expresses viscous friction, while
the remainder represents nonlinear forcing, catalysed by piston motion and viscosity.

Equations (3.7) and (3.12) provide the evolution equations for the primary and
axisymmetric geostrophic amplitudes used in the next section. The geostrophic
amplitudes Aσ described by (3.12) are real, as are the coefficients dσ , CΛσµ+µ+

and Γσ . Expressions for Λσµ+µ+
and Γσ can be found in Appendix A.

4. Analysis and discussion
Equations (3.7) and (3.12) form an infinite set of evolution equations for the primary

and geostrophic mode amplitudes, A+ and Aσ . Transforming to the new amplitude
variable

a = A+ei∆T/2 (4.1)

for the primary mode, leads to

da

dT
= iω+Ca∗︸ ︷︷ ︸

Piston motion

+

⎛
⎜⎜⎜⎜⎜⎝

1
2
i∆̂︸︷︷︸

Detuning

− ε−1Re
−1/2

dr
+︸ ︷︷ ︸

Viscous
damping

+ 2i
∑
σ∈M

Λµ+µ+σ Aσ︸ ︷︷ ︸
Geostrophic flow

⎞
⎟⎟⎟⎟⎟⎠ a + iG|a|2a︸ ︷︷ ︸

Cubic interactions

,

(4.2)

dAσ

dT
= − ε−1Re

−1/2
dσ Aσ︸ ︷︷ ︸

Viscous
damping

+ iCΛσµ+µ+
(a2 − a∗2) + ε−1Re

−1/2
Γσ |a|2︸ ︷︷ ︸

Forcing by primary mode

, (4.3)

in which there are now no time-varying coefficients. Here, we have written dr
+ for the

real part of d+, i.e. dr
+ is the viscous damping factor of the primary mode, and

∆̂ = ∆ − 2ε−1Re
−1/2

di
+ = ε−1

(
ω0 − 2

(
ω+ + Re

−1/2
Di

µ+µ+

))
(4.4)

is a detuning parameter expressing the scaled departure of the piston frequency

from the viscous resonance condition ω0 = ωc = 2(ω+ + Re
−1/2

Di
µ+µ+

), Di
µ+µ+

being
the imaginary part of Dµ+µ+

, representing a small viscous correction to the inviscid

modal frequency ω+. The appearance of ∆̂ in (4.2) is the only way in which the
piston frequency enters the problem. We shall refer to solutions of (4.2), (4.3) which
are independent of time (i.e. yielding zero for the right-hand sides) as fixed points.

The first term on the right-hand side of (4.2) results from the piston oscillations and
is necessary for instability, while dr

+ expresses viscous damping of the primary mode,
both volumetric and due to the boundary layers. The final term in (4.2) arises from
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nonlinear interactions of the primary mode with itself and has the familiar Landau
form. Note that the Landau coefficient, iG, is purely imaginary, thus conserving
energy. As discussed earlier, both the sum over the Aσ and the cubic term can be
thought of as representing a small, O(ε), shift in the frequency of the primary mode
due to the leading-order geostrophic flow, ug = ε

∑
σ∈M Aσ u(σ ), and interactions

of the primary mode with itself. Since ug
r = u

g
Z = 0 and ug is independent of Z,

the geostrophic flow, u
g
θ (r), can be visualized as the steady (on the fast time scale)

rotation of cylinders of fluid of constant r about the cylinder axis, with a rotation rate
which varies with r . This motion produces a small (O(ε)) modification of the basic
solid-body rotation of the fluid in an inertial frame of reference, the resulting small
shift in the primary-mode frequencies being sufficient that the parametric resonance,
itself narrowband, is affected.

Turning to (4.3), the first term on the right-hand side represents the viscous
damping of the geostrophic flow described above, while the remaining two terms
express nonlinear forcing of that flow by the primary mode. The viscous damping
coefficient is given by (I.4.10), in which the volumetric term represents friction between
the differentially rotating cylinders of fluid which comprise the geostrophic flow. The
other term in (I.4.10) corresponds to viscous friction at the endwalls, tending to
slow the rotating cylinders. Since, according to (I.B.7), Dσσ = 21/2/h0, all modes of
the family M would have the same damping rate in the absence of the volumetric
term. Thus, in the absence of both forcing by the primary mode and volumetric
damping, the geostrophic flow would decay exponentially owing to endwall friction,
but maintain the same form of velocity profile u

g
θ (r) at all times. Primary-mode forcing

is responsible for generating and maintaining the geostrophic flow and is resisted by
the viscous effects just described. As is apparent from (4.3), there are two types of
nonlinear forcing. The first, represented by the second term on the right-hand side,
involves a combination of piston motion and nonlinearity, while the other requires
viscosity. Note that, in the absence of piston motion and viscosity, there is no forcing
by the primary mode, so the geostrophic flow does not arise. This is an extension of
the results of Greenspan (1969) to higher order in ε for the case of the cylinder.

If the geostrophic sum is dropped from (4.2), we obtain a generalized Landau
equation for a. Amplitude equations of this form have been obtained for other
problems involving parametric instability, for instance, the Faraday surface-wave
instability (see e.g. Douady 1990, equation (7a) or Milner 1991, equation (22), without
the spatial derivatives, corrected in detail by Miles 1993, Appendix D). It can be
shown that solutions of the generalized Landau equation obtained by neglecting
the geostrophic sum always approach a fixed point as T → ∞, whereas, as we shall
see, the full system of equations, (4.2), (4.3), has much richer large-time dynamics.
Thus, it is important to allow for the effect of the geostrophic modes on the primary
mode.

As noted above, if we neglect the volumetric damping term in (I.4.10), all the
dσ coincide. In that case, the amplitude equations for modes of the family M can
be combined by multiplying (4.3) by Λµ+µ+σ and summing over σ . This leads to
amplitude equations for a and A =

∑
σ∈M Λµ+µ+σ Aσ , i.e. the infinite system (4.2) and

(4.3) is reduced to a finite one. Although obviously simpler than (4.2), (4.3), we know
of no analytical solutions of either system of equations (other than the fixed points
discussed below) and so no real advantage is gained by using the simpler system,
since numerical solution is required in any case. Allowing for volumetric damping of
the geostrophic modes should yield a more accurate description of high-order ones,
so we keep the volumetric damping term in (4.3) in what follows.
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The primary-mode amplitude can be expressed using a real amplitude and phase
as

a = |a| exp
[
− 1

2
i
(
ψ + 1

2
π
)]

, (4.5)

where ψ is a phase angle. Recalling that the scaling u = O(ε1/2) means that the
perturbation dominates the flow, the leading-order velocity field can be written in
terms of |a| and ψ using (2.1), (2.3), (2.4), ∆ = ε−1(ω0 − 2ω+), (4.1) and (4.5). Thus,
combining the two primary modes, we obtain

u = 2ε1/2|a|Re
{

u(µ+)(X) exp
[
− 1

2
i
(
ω0t + ψ + 1

2
π
)]}

(4.6)

at leading order, where Re{ } denotes the real part. Equation (4.6) shows that the
spatial structure is determined by that of the primary mode, while there are fast-time
oscillations at half the piston frequency and slow-time modulations of amplitude and
phase owing to variation of |a| and ψ . As discussed in Part 1, the primary mode, and
hence the flow resulting from instability, consists of one or more oscillatory toroidal
vortices encircling the cylinder axis. Although it is far from the only possible outcome,
a fixed point of constant |a| and ψ may be approached at large times, yielding a
flow which, according to (4.6), is phase locked to the piston oscillations with exactly
half the piston frequency. The saturated amplitude and phase are determined by the
|a| and ψ of the fixed point. Observe that the system (4.2), (4.3) is left invariant
by a change of sign of a, corresponding to adding 2π to ψ . Such a change in ψ is
equivalent to shifting time in (4.6) by the piston period, so the resulting flow (basic
flow plus perturbation) is essentially the same for −a(t) as for a(t), only the time
origin being different for the two flows. In particular, for each fixed point a, there is
an equivalent one at −a.

Using (4.5) in (4.2), (4.3), we obtain the real system

d|a|
dT

= −
(
ε−1Re

−1/2
dr

+ + ω+C cosψ
)
|a|, (4.7)

dψ

dT
= 2ω+C sin ψ − ∆̂ − 2G|a|2 − 4

∑
σ∈M

Λµ+µ+σ Aσ , (4.8)

dAσ

dT
= −ε−1Re

−1/2
dσ Aσ +

(
2CΛσµ+µ+

cos ψ + ε−1Re
−1/2

Γσ

)
|a|2, (4.9)

for |a|, ψ and Aσ . Equation (4.8) describes the time evolution of ψ , which governs the
growth or decay of |a| via (4.7). In (4.7), the first term in brackets represents primary
mode damping, whereas the second corresponds to energy being fed into (or extracted
from) the primary mode by piston motion. Both terms on the right-hand side of (4.7),
as well as the first two on the right-hand side of (4.8), are already present in the linear
theory, whereas −2G|a|2 and the geostrophic sum in (4.8) express the frequency shift
of the primary mode discussed earlier. The two terms on the right-hand side of (4.9)
correspond to viscous friction and nonlinear forcing acting on mode σ , effects also
discussed earlier.

As noted in § 1, if the viscous terms are dropped from (4.7)–(4.9), i.e. we set

Re
−1/2

= 0, the system is integrable. From (4.7) and (4.9), it is found that the
quantities ω+Aσ + Λσµ+µ+

|a|2 are constant, allowing Aσ to be expressed in terms of
|a|2 and permitting elimination of the Aσ from (4.8). Dividing the result by (4.7) then
yields a differential equation which can be integrated to express sin ψ as a function of
|a|2. The result is used in (4.7) to obtain a differential equation for |a|2 as a function of
T , whose solution may either be studied qualitatively in the phase-plane or expressed
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in terms of elliptic functions by quadrature. In general, the amplitudes a and Aσ

oscillate periodically with T , but, if the initial conditions are appropriately chosen,
the solution is a homoclinic orbit associated with one of the unstable fixed points.
An important special case is when the perturbation grows from the linear regime,
corresponding to a → 0, Aσ → 0 as T → −∞. Presuming linear instability of the basic
flow represented by the fixed point a = 0, Aσ = 0, the primary mode initially grows
exponentially, while in the nonlinear regime |a| and |Aσ | pass through a maximum
and finally decay exponentially back to zero as T → +∞. Such behaviour, in which
the basic flow is recovered in the end, is unexpected given the unstable nature of that
flow. Small perturbations to the above solution introduce a certain amount of the
exponentially growing component near the fixed point of zero u and it no longer goes
back to zero. In particular, we would expect even small viscosity to modify the solution
qualitatively, avoiding return to the basic flow. This behaviour is symptomatic of the
singular nature of the inviscid problem, of which other aspects, such as the lack of
a critical piston amplitude and the existence of unstable mode pairs of unboundedly
small wavelengths, were discussed in Part 1. It is apparent that viscosity must be
included in both linear and nonlinear problems.

While we are on the subject of inviscid theories, as discussed in § 1, Waleffe (1989)
carried out an inviscid weakly nonlinear analysis of the different (but related, in that it
involves instability due to parametric inertial-wave resonance) problem of an infinitely
long rotating cylinder with small ellipticity (the elliptic instability). He obtained a pair
of amplitude equations describing the primary mode and a mean-flow correction
(equivalent to the combination A =

∑
σ∈M Λµ+µ+σ Aσ discussed earlier) which have

the same form as (4.2), (4.3) (after dropping the viscous terms and combining (4.3) as
a single equation for A). Like ours in the inviscid case, Waleffe’s equations lead to
periodic or fixed-point behaviour. He attempted to allow for viscosity by the expedient
of adding linear damping terms to the inviscid amplitude equations, without carrying
out the viscous analysis required in order to confirm such an approach. As is apparent
from (4.2), (4.3), this is insufficient (at least in our case) because (a) there is nonlinear
forcing catalysed by viscosity in (4.3), and (b) (4.3) can no longer be combined as a
single equation for A if volumetric damping of the geostrophic modes is allowed for.

It is evident from (4.7) that the primary mode amplitude decays monotonically
to zero unless ω+|C| � ε−1Re

−1/2
dr

+. This condition corresponds to ε � εc, where

εc = dr
+/(Re

1/2
ω+|C|) is the critical piston amplitude introduced in Part 1, and below

which linear instability does not occur no matter what the piston frequency. It now
appears that, even when nonlinearity is allowed for, the primary mode amplitude
decays for ε < εc, whereas when ε > εc, growth or decay of the primary mode depends
on the phase ψ . Since, according to (4.9), the axisymmetric, geostrophic amplitudes
passively follow the primary one, they also decay to zero as T → ∞ when ε < εc,
implying stability of the basic flow to perturbations of any magnitude for piston
amplitudes less than εc. In the limiting case, ε = εc, it can be shown that, at large
times, the solution approaches one of the zero or non-zero fixed points discussed
later.

4.1. Some numerical results

In the absence of analytical solutions of (4.2), (4.3) (or equivalently (4.7)–(4.9)) we
have used numerical integration. Given that the problem has four free parameters,
namely Re, h0, ∆̂ (representing the piston frequency) and ε, together with the choice of
primary mode and initial conditions, a systematic parametric study is hardly feasible
and the cases examined were far from exhaustive. Examples are shown in figures 1 to 3.
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Figures 1 and 2 show trajectories of a in the complex plane and corresponding plots
of |a| as a function of t resulting from numerical integration with Re = 104, h0 = 2

and ∆̂ = 0 for the lowest-order member of the family n = 0, m = 1 (a single
toroidal vortex, the simplest case possible) and an initial perturbation small enough
to be considered as growing from the linear regime. As will be seen, depending on
the value of ε, the solution at large times approaches (a) a fixed point, (b) a limit
cycle, or (c) diverges to infinity. The latter outcome obviously invalidates the weakly
nonlinear theory developed here, but at least indicates that the flow changes character
significantly owing to the appearance of strong nonlinearity.

As the piston amplitude ε is increased from zero, the first stability threshold crossed
is the linear one, which lies at ε = εc since ∆̂ = 0. As we saw above, according to
the present theory, the basic flow is stable to perturbations of any amplitude below
ε = εc. At ε = εc (=0.076014 in the present case), the usual bifurcation associated
with a stability boundary yields a locally stable non-zero fixed point (figures 1a, 2a).
In keeping with the discussion following (4.6), this fixed point represents a new flow
consisting of an oscillatory toroidal vortex, phase-locked to the piston oscillations
and with half the piston frequency. The fixed point later loses local stability, yielding
a Hopf bifurcation to the limit cycle shown in figures 1(b) and 2(b), whose amplitude
grows as ε is further increased. Such a limit cycle corresponds to slow-time periodic
modulation of the toroidal vortex, behaviour which persists until the limit cycle
attains infinite amplitude and divergence occurs (figures 1f and 2f ) at and above a
threshold piston amplitude (ε = 0.10262 in the present case).

Between the values of ε at which the limit cycle first appears and then diverges, it
undergoes a sequence of infinite-period bifurcations through a = Aσ = 0, the first of
which is shown in figures 1(c) and 2(c). At each of these bifurcations, the limit cycle
switches from being asymmetric under the invariance a 	→ −a of (4.2), (4.3) to being
symmetric, or vice versa (see figures 1b and 1d for the first bifurcation and note that
an asymmetric limit cycle is accompanied by a second, equivalent one obtained by
switching the sign of a). The bifurcations also allow the winding number of the limit
cycle about the origin to rise, leading to the spiral form illustrated by figure 1(e).
Such a limit cycle consists of two phases, both apparent in figure 1(e) (and reflected
in figure 2e). During the first phase, corresponding to the line sprouting out from the
origin in figure 1(e), the perturbation grows as if divergence were going to occur, while
in the second phase the perturbation spirals (|a| decays, though not monotonically,
as witnessed by the small wiggles in figure 2e) back to small amplitude and the cycle
restarts owing to the instability of the basic flow. As noted earlier and is apparent
from (4.7), growth or decay of the primary mode depends on the value of ψ , twice
the angle between a and the line ar = −ai > 0 in figure 1e, which is roughly constant
and appropriate for growth during the early stages of the limit cycle. The shift in the
primary mode frequency owing to nonlinearity discussed earlier causes ψ to evolve
and subsequently to vary rapidly with time. This means that the term in (4.7) involving
ψ oscillates rapidly during the spiral phase and, in a time-averaged sense, contributes
little to the evolution of |a|, which consequently decays owing to viscous damping.
Given decreasing forcing by the primary mode, the geostrophic modes also decay.
Once divergence occurs (figure 1f ), although nonlinearity causes ψ to evolve, rapid
variation of ψ does not take place and ψ tends to a constant value compatible with
continued exponential growth as T → ∞.

Non-zero values of ∆̂ were found to exhibit similar behaviour as ε increases, with an
additional twist if ∆̂ < 0: there can be intervals of ε in which the oscillations become
aperiodic, an example being given in figure 3. It appears that aperiodicity arises in
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(e) ( f )

Figure 1. Trajectories in the complex a-plane obtained by numerical integration of (4.2), (4.3)

with Re = 104, h0 = 2, ∆̂ = 0 and the primary mode consisting of the lowest-order member
of the family n = 0, m = 1. The values of ε are (a) ε = 0.085, (b) ε = 0.087, (c) ε = 0.09051,
(d) ε = 0.093, (e) ε = 0.102, (f ) ε = 0.17. The initial modal amplitudes are Aσ = 0 and |a|
sufficiently small that the perturbation is initially in the linear regime. The part of the complex
plane shown is |ar | < 1, |ai | < 1 for (a–d) and |ar | < 3, |ai | < 3 for (e, f ).
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Figure 2. Time evolution of |a| for the same cases as figure 1.

one of the usual ways via an infinite sequence of bifurcations. The usual signatures
of mathematical chaos, namely a positive Lyapunov exponent and a broadband
frequency spectrum, are found in the case of figure 3. The chaotic nature of the
orbit manifests itself as apparently random variations in the length and maximum
amplitude of successive cycles in figure 3(b), but the mechanisms underlying the
oscillations are the same as described above for a limit cycle. As ε is further increased
for the case shown in figure 3, divergence occurs, apparently without the need for
the oscillations to approach infinite amplitude. Note that oscillatory regimes, both
periodic and aperiodic, can occur above the threshold piston amplitude for divergence
obtained in § 5.3 (ε = 0.10262 for the case shown in figure 3).

In order to have a less ad hoc description of at least some aspects of the dynamics
than is possible from numerical examples such as the above, in the next two subsections
we analyse the fixed points and divergences of the system (4.7)–(4.9).
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Figure 3. (a) The trajectory in the complex a-plane (|ar | < 3, |ai | < 3), and (b) the time

evolution of |a| with Re = 104, h0 = 2, ∆̂ = −0.2, ε = 0.130255 and the primary mode
consisting of the lowest-order member of the family n = 0, m = 1. The initial modal
amplitudes are Aσ = 0 and |a| sufficiently small that the perturbation is initially in the linear
regime.

4.2. Fixed points

Fixed-point branches

The basic flow, a = Aσ = 0, always yields a fixed point. As discussed earlier, for
each non-zero fixed point there is an equivalent one obtained by changing the sign of
a. Restricting attention to non-zero fixed points in ar � 0 and setting the right-hand
side of (4.7) to zero, we find that ψ = ±ψ0 where ψ0 is the solution of

cosψ0 = −ε−1Re
−1/2

dr
+

ω+C
=

εc

ε
(4.10)

in 0 � ψ0 < π/2. Thus, a prerequisite for a non-zero fixed point is ε � εc. Setting the
right-hand side of (4.9) to zero and using (4.10) yields

Aσ =
Γσ − 2ω−1

+ dr
+Λσµ+µ+

dσ

|a|2, (4.11)

which determines Aσ in terms of |a|. Setting the right-hand side of (4.8) to zero and
using (4.10) and (4.11), we obtain

|a| =

(
−∆̂ ± ∆0

2G̃

)1/2

, (4.12)

in which the choice of signs corresponds with that of ψ = ± ψ0, ∆0 =
−2ω+C(1 − (εc/ε)

2)1/2 yields the linearly unstable band of piston frequencies as
|∆̂| < ∆0, and

G̃ = G + 2
∑
σ∈M

Λµ+µ+σ

dσ

(
Γσ − 2dr

+

ω+

Λσµ+µ+

)
(4.13)

is a coefficient which depends only on Re, h0 and the choice of primary mode. In
the singular case G̃ = 0, non-zero fixed points do not exist. Otherwise, they exist
provided the argument of the square root in (4.12) is positive, with amplitude given
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Figure 4. Plots of the fixed-point amplitudes as a function of ∆̂ for the primary mode
consisting of the lowest-order member of the family n = 0, m = 1 with (a) Re = 104, h0 = 2,
ε = 0.093, and (b) Re= 2 × 104, h0 = 0.8, ε = 0.2. The continuous lines show locally stable
fixed points, the dashed ones indicate unstable fixed points.

by (4.12) and phase ψ = ±ψ0. Note that non-zero fixed points always lie in the
quadrant ar > 0, ai < 0 of the complex a-plane (with an equivalent one in ar < 0,
ai > 0 obtained via the symmetry a 	→ −a) and have phase determined by setting
the right-hand side of (4.7) to zero. Since the terms on the right-hand side of (4.7)
originate from linear terms in (4.2) (namely the piston-motion and viscous damping
terms), the phase is controlled by linear mechanisms, even though the existence of
non-zero fixed points requires nonlinearity.

Figure 4(a) shows graphs of the fixed-point amplitudes as functions of ∆̂ for a
particular case (corresponding to figure 1d , but with ∆̂ now allowed to vary) in
which G̃ is negative. The two parabolas shown in the figure represent non-zero fixed
points which are born by bifurcation when the basic flow loses linear stability at
the edges of the unstable band, |∆̂| < ∆0, of piston frequencies. If G̃ is positive, as
in figure 4(b), the parabolas branch off from the band edges in the opposite sense.
Continuous lines in these bifurcation diagrams represent locally stable fixed points,
whereas dashed lines correspond to unstable ones. Notice that the two non-zero fixed
points merge when ε = εc (leading to ∆0 = 0 and coincidence of the two parabolas
in the bifurcation diagram), before disappearing when ε < εc. As noted earlier, when
ε = εc, the solution can be shown to approach one of the fixed points (possibly the
basic flow) as T → ∞. For this reason, we restrict attention to ε > εc in what follows.

Local stability of fixed points

Analysis of local stability, based on linearization of (4.7)–(4.9) about a non-zero
fixed point, is straightforward and only briefly sketched here. We look for solutions of

the linearized equations of the exponential form exp(sT /εRe
1/2

) and obtain a matrix
eigenvalue problem for s which was solved using a standard eigenvalue routine when
plotting figure 4. As usual, an eigenvalue with a positive real part is symptomatic
of instability and leads to a dashed line in the bifurcation diagram. For analytical
purposes, the eigenvalues may be shown to be the complex roots of f (s) = 0, where

f (s) = s
(
s + 2dr

+

)
+ α

(
G + 2

∑
σ∈M

Λµ+µ+σ

s + dσ

(
Γσ − s + 2dr

+

ω+

Λσµ+µ+

))
(4.14)

and α = ∓2ε2Re ∆0|a|2 is the only parameter via which dependence on ε and ∆̂

enters the problem. The function f (s) is real for real s, going from f (0) = αG̃
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to f (+∞) = +∞ as s runs over positive real values. For the lower branch in the
bifurcation diagram, αG̃ < 0, so that the branch yields a real positive zero of f (s)
and is consequently always unstable, as reflected in figure 4. As is also seen from
figure 4, the upper branch may or may not lose stability as ∆̂ is varied. At a point
of stability loss, f (s) has a zero on the imaginary s-axis. Since f (0) = αG̃, loss of
stability is always oscillatory because otherwise G̃ = 0, the singular case noted earlier
for which the fixed point does not exist.

The upper branch is locally stable near its bifurcation point at ∆̂ = ∆0sgn(G̃),
as is apparent by examining the α → 0 limit of the complex zeros of (4.14), which
behave as s → −2dr

+, s → −dσ and s ∼ −αG̃/2dr
+ and are all of negative real part since

αG̃ > 0 for the upper branch. Varying either ∆̂ or ε changes (4.14) via α. Thus, for
given Re, h0 and a particular choice of primary mode, stability depends on just the
one parameter α, which has the same sign as G̃, but can otherwise take on any value.
Varying α and solving the matrix eigenvalue problem, the upper branch fixed point
is either stable for all α, and hence for all ∆̂ and ε (as in figure 4b), or it has one
or more stability thresholds. In a systematic (but non-exhaustive) parametric search,
in which Re, h0 and the primary mode were varied, we never found more than one
threshold, so, for given Re, h0 and a particular choice of primary mode, the upper
branch is either always locally stable or there is a single stability boundary, α = αc.
If αc is such a threshold, then

∆̂ = sgn(G̃)

(
∆0 − αcG̃

ε2Re ∆0

)
(4.15)

gives the corresponding stability boundary for ∆̂. Recalling that ∆0 =
−2ω+C(1 − (εc/ε)

2)1/2, (4.15) yields a neutral curve of the upper-branch fixed point
in the (∆̂, ε)-plane. Figure 5 shows a plot of this curve for the case of figure 4(a) (but
now allowing ε to vary). Because G̃ < 0 and ∆0 is a positive, increasing the function
of ε, from zero at ε = εc to −2ω+C as ε → ∞, (4.15) decreases from +∞ at ε = εc

to 2ω+C as ε → ∞. As ε increases, the neutral curve of the upper branch approaches
the left-hand side of the basic-flow neutral curve, |∆̂| = ∆0, which is also shown in
figure 5, as is the divergence threshold, ε = εd , derived in the next subsection. It
should be borne in mind that the upper-branch fixed point, whose local stability we
are considering, exists only for ε � εc and ∆̂ > −∆0 (∆̂ < ∆0 if G̃ > 0), i.e. inside
and to the right (left if G̃ > 0) of the neutral curve of the basic flow.

Bifurcation type

The nature, subcritical or supercritical, of the bifurcation associated with loss
of stability of the upper branch may be determined in the usual way via weakly
nonlinear analysis of (4.7)–(4.9) near the fixed point, the sign of the real part of the
Landau constant determining the bifurcation type. Given the lengthy analysis, we
do not give details here. It is found that the Landau constant consists of a positive
factor multiplying a quadratic in ε2 whose coefficients depend on Re, h0 and the
choice of primary mode. Thus, for given Re, h0 and a particular primary mode,
the coefficients of the quadratic can be calculated and hence the behaviour of the
bifurcation determined as a function of ε. The systematic parametric search referred
to above, in which Re, h0 and the primary mode were varied, led to the conclusion
that (aside from some cases with values of ε which are so large as to lie well beyond
the scope of the present theory) the bifurcation is always supercritical. Given its
oscillatory nature, the bifurcation yields a limit cycle, as illustrated by figures 1(a)
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Figure 5. Neutral curves in the (∆̂, ε) plane for the upper-branch fixed point (continuous
curve) and basic flow (dashed curve) with Re = 104, h0 = 2 and the primary mode consisting
of the lowest-order member of the family n = 0, m = 1. The dashed horizontal line is the
divergence threshold εd .

and 1(b), which, as we saw earlier, may subsequently become aperiodic. It is therefore
reasonable to conjecture, as found in our numerical simulations, that instability of
the upper branch is a necessary condition for the existence of oscillations as T → ∞.
That is, such oscillations should arise only above the upper-branch neutral curve,
otherwise a fixed point or divergence is to be expected.

4.3. Divergence threshold

In all cases in which the numerical solution diverged to infinity, it was observed to
be accompanied by ψ → ψ∞ (see e.g. figure 1f ). Assuming this is the case in general,
we derive a necessary condition for divergence. Equation (4.7) then implies that

|a|2 ∼ K exp(sT /εRe
1/2

) (4.16)

as T → ∞, where

s = −2
(
dr

+ + εRe
1/2

ω+C cosψ∞
)

(4.17)

must be positive in order that |a| grows, rather than decays. Using (4.16), (4.17) and
ψ → ψ∞, (4.9) leads to

Aσ ∼ K exp
(
sT /εRe

1/2)Γσ − ω−1
+

(
s + 2dr

+

)
Λσµ+µ+

s + dσ

. (4.18)

Note that (4.16) and (4.18) show that divergence, when it occurs, is exponential. Using

(4.16) and (4.18) in the right-hand side of (4.8), the coefficient of exp(sT /εRe
1/2

) must
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Figure 6. Plots of the divergence threshold εd as a function of Re for the primary mode
consisting of the lowest-order member of the family n = 0, m = 1 and three values of h0: the
upper curve is for h0 = 10, the lower curve for h0 = 2, and the middle curve for h0 = 0.8.

be zero, for otherwise ψ would not approach a limit. Thus, we obtain g(s) = 0, where

g(s) = G + 2
∑
σ∈M

Λµ+µ+σ

(
Γσ − ω−1

+

(
s + 2dr

+

)
Λσµ+µ+

)
s + dσ

(4.19)

depends only on s, Re, h0 and the choice of primary mode.
In order that a zero of g(s) can produce divergence, it must be positive. Thus, a

prerequisite for divergence is that there be at least one such zero of g(s). Furthermore,
(4.17) should have a solution for ψ∞, i.e. the zero must lie in

s � 2
(
εRe

1/2
ω+|C| − dr

+

)
, (4.20)

a condition which is satisfied provided the right-hand side exceeds the smallest positive
zero, smin, of g(s). Thus, divergence requires that ε � εd , where

εd =
smin + 2dr

+

2Re
1/2

ω+|C|
(4.21)

is a threshold piston amplitude for divergence (which can be extended to the case
when g(s) does not have positive zeros by setting εd = +∞ in that case). Since the
function g depends only on Re, h0 and the particular choice of primary mode, εd is
independent of ∆̂, as reflected by the horizontal dashed line in figure 5 representing

the divergence threshold ε = εd . Observe that, since εc = dr
+/Re

1/2
ω+|C|, (4.21) implies

that εd > εc, which is an obvious consequence of (4.7) not allowing growth of |a|
when ε � εc.

Figure 6 shows εd as a function of Re for three values of h0 and the same
primary mode as for earlier figures. It is apparent that εd decreases with increasing
Re, implying that larger Reynolds numbers tend to favour divergence. On the other
hand, the curve for h0 = 0.8 comes to an abrupt end at a certain value of Re, above
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which g(s) has no positive zeros and divergence cannot occur. Thus, in this rather
different sense, larger Reynolds numbers may inhibit divergence.

The condition, ε � εd , for divergence is necessary but not sufficient. For instance,
the basic flow is locally stable outside its neutral curve in figure 5. Thus, a perturbation
which approaches zero, rather than diverging, is possible even when ε � εd . On the
other hand, divergence occurs in figures 1 and 2 as soon as ε � εd . More generally,
provided ε � εd , we found that the initial conditions could always be chosen to make
divergence happen. Thus, as is often the case, a number of outcomes are possible and
which one actually occurs depends on the initial conditions via the attraction basins
of the various possibilities. In our case, these possibilities appear to consist of the
fixed points identified earlier (when they are locally stable), a limit cycle or chaotic
attractor when the upper-branch fixed point is unstable, and divergence if ε � εd .

5. Conclusions
Weakly nonlinear amplitude equations for the primary modes resulting from linear

instability have been derived. They contain an infinity of axisymmetric geostrophic
mode amplitudes, representing a modification to the mean flow which, along with
cubic interactions among the primary modes, produces a small, but significant, shift
in their frequencies. This frequency shift causes the evolution of the primary mode
phase, which controls the rate and direction of energy supply to the primary modes
by piston motion, to evolve differently and hence affects modal growth or decay.
The geostrophic amplitude equations show mean forcing coming from quadratic
interactions of the primary modes, catalysed by piston motion and viscosity, and
resisted by viscous damping. Thus, as the primary modes grow from the linear regime,
the geostrophic modes are spun up, leading to nonlinear effects on the primary modes
owing to frequency shifting once the perturbation has reached O(ε1/2), large compared
with the basic flow due to piston oscillations of O(ε). We expect weakly nonlinear
amplitude equations of the same generic form (but representing different primary
modes and with different coefficients) for other instabilities arising from parametric
resonance of inertial modes.

The detailed consequences of the amplitude equations have been investigated in
the case of an axisymmetric primary mode, corresponding to one or more oscillatory
toroidal vortices encircling the cylinder axis, and axisymmetric geostrophic flow. The
inclusion of viscosity was found to be crucial to avoid singular behaviour arising
from integrability of the inviscid equations. The geostrophic modes were also found
to be an essential ingredient of the problem, for without them the solution always
approaches a fixed point at large times, representing, in the case of a non-zero fixed
point, a saturated state in which the primary mode becomes phase-locked to the piston
motion with half its frequency. The full set of equations also allow such fixed points
as T → ∞ for some ranges of parameter values and initial conditions, but much richer
behaviour is possible: periodic or chaotic oscillations, or exponential divergence of
the mode amplitudes to infinity. The latter outcome invalidates the weakly nonlinear
theory used here, but shows that the character of flow must change dramatically,
perhaps undergoing finite-amplitude wave breaking and transition to turbulence, as
observed in a number of experiments. In any case, divergence provides a route out
of the weakly nonlinear regime, while a limit cycle or aperiodic attractor implies
slow-time oscillations of the amplitude and phase of the primary and geostrophic
modes.
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In addition to the zero fixed point of the amplitude equations representing the basic
flow, which was shown to be globally stable for piston amplitudes below the critical
value εc from linear theory and is locally unstable inside the neutral curve in the piston
frequency–amplitude plane determined in Part 1, two non-zero fixed-point branches
(referred to as lower and upper branches according to the magnitude of the associated
perturbation amplitude) are born via pitchfork bifurcation when the basic flow loses
local stability as the neutral curve is crossed. Local stability analysis of these non-zero
fixed points showed that the lower branch is always unstable, whereas the upper
branch, although stable near its bifurcation from the basic flow, may subsequently
lose stability, leading to a supercritical Hopf bifurcation and a limit cycle. Chaotic
oscillations were subsequently observed to appear via a sequence of bifurcations, and
it was conjectured that such oscillations, whether periodic or not, exist only when
the upper branch is unstable. During oscillations of large maximum amplitude, the
perturbation initially grows from small values owing to linear instability of the basic
flow, but nonlinearity intervenes to detune the parametric resonance, leading to decay
back from large amplitudes during the second half of the cycle. The perturbation
returns to small amplitude and the process begins again.

Analysis of divergence led to a threshold piston amplitude, dependent on the
rotational Reynolds number, cylinder geometry and choice of primary mode, but
independent of the piston frequency, below which divergence cannot occur. The
threshold may be infinite, meaning that divergence cannot occur no matter what
the piston amplitude and frequency. Once the threshold is exceeded, it always seems
possible to choose the initial conditions so that divergence happens, but cases were
found in which a fixed point, limit cycle or aperiodic attractor was approached at
large times, despite being above the divergence threshold.

Following on from the analytical work described here and in Part 1, experimental
(Graftieaux et al. 2002; Graftieaux 2003) and DNS (Duguet, Scott & Le Penven
2005) studies of the present instability for the lowest-order axisymmetric mode have
confirmed the neutral curve obtained in Part 1 and the end-result of instability as the
predicted inertial mode. They also found that the frequency spectrum of the velocity
field, consisting of the piston frequency and its harmonics in the absence of instability,
acquired a strong peak at ω0/2, more energetic than that at ω0, when instability was
present. This is consistent with the asymptotic dominance of the perturbation (O(ε1/2))
over the basic flow (O(ε)) in the present theory. Both studies found that, depending
on parameter values, the amplitude of the primary mode either approached a limiting
value or underwent slow (compared to the piston period) oscillations at long times,
outcomes corresponding to the fixed points and slow-time limit cycles of the present
work, though the amplitude of modal amplitude oscillations in Duguet et al. (2005)
was smaller than predicted by the present theory. Duguet et al. (2005) (and Le Penven
in an as yet unpublished analysis of Graftieaux’s data) also determined the mean flow
in the case of a fixed point and found reasonable agreement with the results of the
present theory. Since the mean flow contains the geostrophic modes, this provides a
detailed check on the theory. Note however, that no clear equivalent of divergence
was found (nor any flow breakdown to turbulence). In summary, although the linear
theory of Part 1 has been confirmed, questions remain on the nonlinear side. We aim
to resolve these issues in future experimental work.

As noted in § 1, the experimental study by Eloy et al. (2003) of the elliptic instability
found either a fixed point or flow breakdown (they also found cases in which a
secondary parametric instability occurred; see the discussion below). For the case
of a fixed point, they found good agreement between the experimental and weakly
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nonlinear theoretical amplitude and phase of the primary mode, the latter being
obtained using amplitude equations for the elliptic case of the same form as derived
by asymptotic analysis here.

Finally, in deriving the geostrophic amplitude equation (3.12), it was supposed,
for simplicity, that a secondary, symmetry-breaking, geostrophic instability does not
occur, otherwise the geostrophic flow would spontaneously become non-axisymmetric
and the more general equation, (B 12), would be required. Kerswell (1999) identified
such a geostrophic instability by linear stability analysis of a single inertial mode in
a cylinder (with the simplifying assumptions of constant modal amplitude, neglect of
the axisymmetric geostrophic flow it would induce, and artificial stress-free boundary
conditions on the endwalls (as a result, Kerswell’s solubility condition for his equation
(4.7) is equivalent to the eigenvalue problem for the matrix iΞσλ)). Kerswell (1999) and
Mason & Kerswell (1999) also found another type of secondary instability, implicitly
supposed absent in our analysis, in which two secondary modes are such that their
frequency difference is close to the frequency of the primary mode (cf. the discussion
in Kerswell 2002, § 4). This is a parametric instability, similar in nature to the primary
one, but in which the primary mode plays the role of the piston oscillations in our
problem or ellipticity in the elliptic one. Eloy et al. (2003) observed this kind of
instability experimentally in an elliptic cylinder for certain parameter values. Clearly,
secondary instabilities can be important and merit further study, but are beyond the
scope of the present work.

J.-P.R. would like to acknowledge support by the Service de la Recherche et des
Etudes Amont for a part of the study reported in this paper.

Appendix A. Nonlinear coefficients for axisymmetric modes
This Appendix gives detailed expressions for the coefficients G, Λσµ+µ+

, Λµ+µ+σ and
Γσ appearing in the amplitude equations. Throughout, µ+ is axisymmetric and σ both
axisymmetric and geostrophic. Derivation of (A 1)–(A 3) can be found in Appendix
E, while (A 4) is derived in Appendices F to H. The integrals appearing below are
evaluated numerically.

G =
ω+

3πh0J
4
0

(
k(µ+)

) ∫ k(µ+)

0

(
10

ξ
− ξ

)
J ′

0
4(ξ ) dξ, (A 1)

Λσµ+µ+
=

2ω+k(µ+)

(πh0)1/2J 2
0

(
k(µ+)

)
J0

(
k(σ )
) ∫ 1

0

rJ0

(
k(µ+)r

)
J ′

0

(
k(µ+)r

)
J ′

0

(
k(σ )r

)
dr, (A 2)

Λµ+µ+σ =
3k(µ+)2 − k(σ )2

2k(µ+)2
Λσµ+µ+

, (A 3)

Γσ =
(
β (1) + β (2)k(σ )2

)
Λσµ+µ+

, (A 4)

β (1) =
4

h0ω+

(
21/2

[
1
4

(
1 − ω2

+

)(
h0ω

1/2
+ − (1 − ω2

+)1/2

ω+

(
(1 + ω+)1/2 − (1 − ω+)1/2

))
− 1

]

+Re

{∫ ∞

0

exp(−2−1/2ξ )

[(
F∗ dFθ

dξ
− F ∗

r Fθ

)
cos

(
2−1/2ξ

)
−
(

F∗ dFr

dξ
+ |Fr |2 + 2|Fθ |2 − ω2

+ − 2

)
sin
(
2−1/2ξ

)]
dξ

})
. (A 5)
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β (2) =
2

h0ω+k(µ+)2

(
2−1/2 +

∫ ∞

0

exp(−2−1/2ξ )
(
|Fr |2 + |Fθ |2 − ω2

+ − 1
)
sin(2−1/2ξ )dξ

)
,

(A 6)

Fr (ξ ) = i
(
ω+ − 1

2

(
(1 + ω+) exp(−γ

(µ+)
− ξ ) − (1 − ω+) exp(−γ

(µ+)
+ ξ )

))
, (A 7)

Fθ (ξ ) = 1 − 1
2

(
(1 + ω+) exp(−γ

(µ+)
− ξ ) + (1 − ω+) exp(−γ

(µ+)
+ ξ )

)
, (A 8)

F(ξ ) =

∫ ξ

0

Fr (ξ
′) dξ ′. (A 9)

Note that, in (A 5), Re denotes the real part.

Appendix B. Completion of the geostrophic amplitude equations
As noted in the main text, asymptotic evaluation of the integrals on the right-hand-

side of (3.11) involves lengthy analysis and the objective of this Appendix is to out-
line the procedure and give the results. Details can be found in Appendices F to H.

For future reference, the solution of (3.3) is

B [3]
µ = Bµ exp

(
−iω(µ)t

)
−

∑
ν=µ+, µ+

∗

CµνAν

{
ω(ν) − ω0

ω(ν) − ω(µ) − ω0

exp
(
−i
(
ω(ν) − ω0

)
t
)

+
ω(ν) + ω0

ω(ν) − ω(µ) + ω0

exp
(
−i
(
ω(ν) + ω0

)
t
)}

− iε−1Re
−1/2 ∑

ν=µ+, µ∗
+

Dµν

ω(ν) − ω(µ)
Aν

× exp
(
−iω(ν)t

)
−2

∑
λ

ν=µ+, µ∗
+

Λµνλ

ω(ν) + ω(λ)−ω(µ)
AνAλ exp

(
−i
(
ω(ν) + ω(λ)

)
t
)

− 1

2

∑
ν1,ν2,ν3=
µ+, µ∗

+

Fµν1ν2ν3

ω(ν1) + ω(ν2) + ω(ν3) − ω(µ)
Aν1

Aν2
Aν3

exp
(
−i
(
ω(ν1) + ω(ν2) + ω(ν3)

)
t
)
,

(B 1)

where Bµ (T ) is a slowly varying amplitude and the secular terms identified while
deriving (3.7) and its conjugate should be excluded from the sums when µ = µ+ and
µ = µ∗

+ to avoid divisions by zero.

B.1. Determination of the integrals in (3.11)

Evaluation of the surface integral in (3.11) involves boundary-layer analysis of the
mean flow 〈u〉 (see Appendix F). The result is

ε−2Re
−1
∫

Z=0,h0

u(σ )∗ · (n · ∇〈u〉) d2X ∼ −ε−1Re
−1/2

Dσσ Aσ +ε−1Re
−1/2

Γ (1)
σ |A+|2, (B 2)

where the first term on the right-hand side expresses modal damping by endwall
viscous friction (the sidewalls do not contribute to the damping of geostrophic modes)
and the final term is the first of several nonlinear contributions having the same form,
ε−1Re

−1/2|A+|2, but differing numerical coefficients Γσ . These terms represent mean
forcing of the geostrophic flow by the primary modes owing to nonlinearity, forcing

which requires viscosity for its existence, as is apparent from the factor Re
−1/2

.
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The volume integral in (3.11) is more difficult to evaluate. Equations (2.1) and (2.6)
give ∫

u · (u · ∇) u(σ )∗d3X = i
∑
λ1,λ2

Λσλ1λ2
Bλ1

Bλ2
(B 3)

and it is tempting to employ (2.3) directly to extend the expansion (2.5) to O(ε2).
However, this approach runs into difficulties for the following reasons. Note first that
the boundary layers in u give only O(ε3/2) contributions to the integral in (I.3.8)
and hence are not present in the first two terms of (2.3), first making themselves
felt in B [3]

µ . Now, the construction of layers of thickness O(ε) from a modal sum
such as (2.1) requires modes of wavelengths comparable with ε, i.e. high-order modes
with K (µ) = O(ε−1) (specifically, large axial wavenumber mµπ/h0 = O(ε−1) for the
endwall layers and large transverse wavenumber k(µ) = O(ε−1) for the sidewall layer).
As ε → 0, more and more such high-order B [3]

µ are required to represent the boundary
layers and, if (2.3) is used in (B 3), an asymptotically large number of terms such as
iε3Λσλ1λ2

B
[3]
λ1

B
[3]
λ2

, each of O(ε3), sum to yield a net contribution of O(ε2), the order

to which we are working. What is more, equation (B 1) (giving B [3]
µ ) is not uniformly

valid up to such high orders because, when K (µ) = O(ε−1), the volumetric viscous
term is promoted to leading order in the asymptotic analysis. Evidently a more careful
approach is required.

Define ũ and û by

ũ =
∑

µ

(
ε1/2B [1]

µ + εB [2]
µ

)
u(µ), û = u − ũ =

∑
µ

B̂µu(µ), (B 4)

so that u = ũ + û. ũ consists of the first two orders of the expansion (2.3) and so
has no boundary layers, giving the flow outside the layers correct to O (ε), whereas
û represents the correction to ũ from all higher orders and contains the boundary
layers. Writing∫

u · (u · ∇) u(σ )∗d3X =

∫
ũ · (ũ · ∇) u(σ )∗d3X +

∫
(ũ · (û · ∇) + û · (ũ · ∇)) u(σ )∗d3X

+

∫
û · (û · ∇) u(σ )∗d3X, (B 5)

each of the integrals on the right-hand side is treated separately. In (B 4), note
that B̂µ = O(ε3) because the first two orders have been subtracted in the definition
û = u − ũ. Furthermore, our earlier analysis shows that, provided µ is not of such
high-order that the non-uniformity discussed above occurs, B̂µ has the expansion

B̂µ ∼ ε3B [3]
µ , with B [3]

µ given by (B 1).
Using (2.6) and the definition (B 4) of ũ, we have∫ 〈

ũ · (ũ · ∇) u(σ )∗〉 d3X = i
∑
λ1,λ2

Λσλ1λ2

(
ε
〈
B

[1]
λ1

B
[1]
λ2

〉
+ 2ε3/2

〈
B

[1]
λ1

B
[2]
λ2

〉
+ ε2

〈
B

[2]
λ1

B
[2]
λ2

〉)
(B 6)

which is evaluated (see Appendix G) using (2.4) and (3.2) and looking for terms which
make a non-zero contribution to the sum. The result is

ε−2

∫ 〈
ũ · (ũ · ∇) u(σ )∗〉 d3X = i

∑
λ1,λ2∈Mg

Λσλ1λ2
Aλ1

Aλ2
, (B 7)
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where Mg denotes the set of all geostrophic modes and the right-hand side comes

from the term Aµe−iω(µ)t in (3.2) via 〈B [2]
λ1

B
[2]
λ2

〉 in (B 6).
Using (2.6), (B 4) for û, and the leading-order expression ũ ∼

ε1/2
∑

ν=µ+, µ∗
+
Aν exp(−iω(ν)t)u(ν) for ũ, the second integral on the right-hand side

of (B 5) is expressed as∫ 〈
(ũ · (û · ∇) + û · (ũ · ∇)) u(σ )∗〉 d3X ∼ 2iε1/2

∑
λ

ν=µ+, µ∗
+

ΛσνλAν〈B̂λ exp(−iω(ν)t)〉.

(B 8)
It turns out (see Appendix G) that the high-order modes in û, which represent the
boundary layers, make negligible contributions to the sum in (B 8). As a result, the
high-order non-uniformity of the asymptotics noted above is avoided and (B 8) gives∫ 〈

(ũ · (û · ∇) + û · (ũ · ∇)) u(σ )∗〉 d3X ∼ 2iε2
∑
λ

ν=µ+, µ+
∗

ΛσνλAν〈B [3]
λ exp(−iω(ν)t)

〉
,

(B 9)
with B

[3]
λ given by (B 1) and where B̂λ ∼ ε3/2B

[3]
λ has been used. Analysis of this result

(see Appendix G), looking for non-zero terms, leads to

ε−2

∫ 〈
(ũ · (û · ∇) + û · (ũ · ∇)) u(σ )∗〉 d3X ∼ i|A+|2

∑
λ∈Mg

ΞσλAλ

+ iC(Λσµ+µ+
A2

+ exp(i∆T ) + Λσµ∗
+µ∗

+
A∗

+
2
exp(−i∆T )) + ε−1Re

−1/2
Γ (2)

σ |A+|2, (B 10)

where the last two terms stem from the piston-motion and viscous contributions in
(B 1), while the first term on the right comes from the sum in (B 1) involving Aλ.
The second term represents mean nonlinear forcing of the geostrophic flow by the
primary modes and requires piston motion (rather than viscosity, which is required
by the final term) as a catalyst.

The sum of the right-hand sides of (B 6) and (B 9) is precisely what would be
obtained by formal extension of (2.5) using (2.3) in (B 3) (the direct approach
discounted earlier), but there remains the third integral on the right-hand side of
(B 5). It is here that more care is needed because the use of a modal sum would
require many high-order terms for which (B 1) does not apply. Fortunately, it is
found that the integral is dominated by the endwall boundary layers and using the
leading-order expression for u in those layers (see Appendix H) gives

ε−2

∫ 〈
û · (û · ∇) u(σ )∗〉 d3X ∼ ε−1Re

−1/2
Γ (3)

σ |A+|2 (B 11)

as the final contribution to the geostrophic amplitude equation

dAσ

dT
= − ε−1Re

−1/2
dσ Aσ︸ ︷︷ ︸

Viscous
damping

+ i
∑

λ1,λ2∈Mg

Λσλ1λ2
Aλ1

Aλ2
+ i|A+|2

∑
λ∈Mg

ΞσλAλ

︸ ︷︷ ︸
Nonlinear coupling of geostrophic modes

+ iC(Λσµ+µ+
A2

+ exp(i∆T ) + Λσµ∗
+µ∗

+
A∗

+
2
exp(−i∆T )) + ε−1Re

−1/2
Γσ |A+|2︸ ︷︷ ︸

Nonlinear forcing of geostrophic modes

,

(B 12)
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where the right-hand side is the sum of (B 2), (B 7), (B 10), (B 11) and the volumetric
viscous term from (3.11). Here, dσ , given by (I.4.10), is the damping factor of mode
σ and Γσ = Γ (1)

σ + Γ (2)
σ + Γ (3)

σ is the sum of the three coefficients multiplying similar
terms in (B 2), (B 10) and (B 11). Γσ and Ξσλ are real coefficients, dependent only on
h0 and the choice of primary mode. They have the properties that Γσ = 0 unless
nσ = 0 and Ξσλ = 0 if either nσ = 0 or nλ = 0.

The damping term in (B 12) expresses a combination of endwall friction and
(volumetric) viscous effects outside the boundary layers, both of which tend to slow
the geostrophic flow. The second term represents nonlinearity of the geostrophic
flow itself and is exactly what we would expect from the convective term in the
Navier–Stokes equations if the geostrophic flow were the whole flow. Despite being
nonlinear overall, the third term is linear in the Aµ and corresponds to a coupling
of geostrophic modes induced by the presence of the primary mode. The final two
terms in (B 12) are both zero unless nσ = 0 (thanks to (2.7) and Γσ = 0 for nσ �=
0) and represent mean axisymmetric forcing of the leading-order geostrophic flow
ug = ε

∑
µ∈Mg

Aµu(µ) by the primary mode, forcing which arises from nonlinearity,

catalysed by piston motion and viscosity. Note that, in defining the geostrophic
flow as ug = ε

∑
µ∈Mg

Aµu(µ), the forced contribution in (3.2) (which oscillates at

frequency 2ω+) for geostrophic µ has not been included. Thus, ug is really the
mean part of the geostrophic flow, though this distinction is not made in the main
text. Equations (3.7) and (B 12) form a complete set of weakly nonlinear amplitude
equations governing the coupled time evolution of the primary mode and geostrophic
flow.

B.2. Specialization to axisymmetric geostrophic flow

Because forcing by the primary mode is axisymmetric, if the geostrophic flow is
initially axisymmetric, i.e. Aµ = 0 for all µ ∈ Mg with nµ �= 0, it remains so at
later times. For a primary mode growing from the linear regime, the Aµ start off
zero and it is thus reasonable to suppose axisymmetry of the geostrophic flow. This
being said, a secondary symmetry-breaking instability might occur, in which case
the geostrophic flow would spontaneously become non-axisymmetric and the full
set of amplitude equations, (B 12) for all σ ∈ Mg , would be required. However,
for simplicity, we suppose this is not the case and take the geostrophic flow as
axisymmetric in the main text. Attention can then be restricted to σ ∈ M and (B 12)
becomes (3.12), where we have used Λσλ1λ2

= Ξσλ = 0 and Λσµ∗
+µ∗

+
= −Λσµ+µ+

(which
follow when σ , λ, λ1, λ2 ∈ M , as here, from (D 4) and Ξσλ = 0 for nσ = 0 or nλ = 0).
Note that coupling of geostrophic modes has disappeared in going from (B 12) to
(3.12).

Appendix C. Non-axisymmetric primary modes
In this Appendix, we briefly derive and discuss the amplitude equations for a

pair of non-axisymmetric modes, µ+, µ−, of the same modal family. At O (ε), we
again obtain (3.1) and (3.2), but the sums over ν1 and ν2 now run over the four
values µ+, µ−, µ∗

+ and µ∗
− because the leading-order solution includes the mode

pair and its conjugate in order to represent a real velocity field. At the next
order, (3.3) holds as before: Ψ L

µ is the sum of the right-hand sides of (I.4.5)–

(I.4.7), divided by δε, and Ψ NL
µ is given by (3.4), with the ν-sums taken over

µ+, µ−, µ∗
+ and µ∗

−. Secular terms in the equations for µ = µ+, µ−, µ∗
+ and
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µ∗
− may be picked out as before. When µ = µ+, we obtain the non-secularity

condition

dA+

dT
= iω+C exp(−i∆T )A− +

(
2i
∑
σ∈M

Λµ+µ+σ Aσ − ε−1Re
−1/2

d+

)
A+

+ i(G++|A+|2 + G+− |A−|2)A+, (C 1)

to be compared with (3.7) for the axisymmetric case, where C = Cµ+µ− = Cµ−µ+
and

G++ = 1
2
Fµ+µ+µ+µ∗

+
+ Fµ+µ+µ∗

+µ+
, G+− = Fµ+µ+µ−µ∗

− + Fµ+µ+µ∗
−µ− + Fµ+µ−µ∗

−µ+
(C 2)

are real-valued nonlinear coefficients. Similar reasoning for µ = µ− leads to

dA−

dT
= iω−C exp(i∆T )A+ +

(
2i
∑
σ∈M

Λµ−µ−σ Aσ − ε−1Re
−1/2

d−

)
A−

+i
(
G−+|A+|2 + G−− |A−|2

)
A−, (C 3)

where

G−− = 1
2
Fµ−µ−µ−µ∗

− + Fµ−µ−µ∗
−µ−, G−+ = Fµ−µ−µ+µ∗

+
+ Fµ−µ−µ∗

+µ+
+ Fµ−µ+µ∗

+µ−, (C 4)

are also real. Comparison of the nonlinear mode-pair equations (C 1) and (C 3)
with their linear counterparts, (I.4.12) and (I.4.13), shows that they agree when the

nonlinear terms are dropped (and d̂± = ε−1Re
−1/2

d± used), as one would expect.
As for the axisymmetric case, we need equations for the geostrophic, axisymmetric

mode amplitudes Aσ . Equation (3.11) holds as before and its right-hand side is treated
using the same methods, but allowing for the existence of the four primary modes µ+,
µ−, µ∗

+ and µ∗
−. Mean nonlinear forcing by the primary modes is axisymmetric despite

the non-axisymmetric nature of these modes and, assuming the absence of a secondary,
symmetry-breaking instability, the geostrophic flow is taken as axisymmetric. The
resulting amplitude equations are

dAσ

dT
= −ε−1Re

−1/2
dσ Aσ + iC̃σ

(
A+A∗

− exp(i∆T ) − A∗
+A− exp(−i∆T )

)
+ ε−1Re

−1/2
(Γ +

σ |A+|2 + Γ −
σ |A−|2), (C 5)

for σ ∈ M , where the coefficients Γ ±
σ and

C̃σ = 2ω−
∑
λ�=µ∗

−

Cλµ∗
+
Λσµ−λ

ω− + ω(λ)
− 2ω+

∑
λ�=µ∗

+

Cλµ∗
−Λσµ+λ

ω+ + ω(λ)
, (C 6)

are real.
Adopting the new amplitude variables

a+ = A+ exp(i∆T/2), a− = A− exp(−i∆T/2) (C 7)

for the primary modes yields

da+

dT
= iω+Ca− +

(
1
2
i∆ + 2i

∑
σ∈M Λµ+µ+σ Aσ − ε−1Re

−1/2
d+

)
a+

+ i(G++|a+|2 + G+−|a−|2)a+, (C 8)
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da−

dT
=iω−Ca+−

(
1
2
i∆ − 2i

∑
σ∈M

Λµ−µ−σ Aσ + ε−1Re
−1/2

d−

)
a−+i(G−+|a+|2 + G−−|a−|2)a−,

(C 9)
dAσ

dT
= −ε−1Re

−1/2
dσ Aσ + iC̃σ

(
a+a∗

− − a∗
+a−

)
+ ε−1Re

−1/2
(Γ +

σ |a+|2 + Γ −
σ |a−|2).

(C 10)
Introducing magnitudes and phases via a+ = |a+| exp −i(ψ+ + π/4) and a− =

|a−| exp −i(ψ− − π/4), we obtain

d|a+|
dT

= −ε−1Re
−1/2

dr
+|a+| − ω+C |a−| cos ψ, (C 11)

d|a−|
dT

= −ε−1Re
−1/2

dr
−|a−| + ω−C |a+| cos ψ, (C 12)

dψ

dT
= C

(
ω+

|a−|
|a+| − ω−

|a+|
|a−|

)
sin ψ − ∆̂ + 2

∑
σ∈M

(Λµ−µ−σ − Λµ+µ+σ )Aσ

+ (G−+ − G++)|a+|2 + (G−− − G+−)|a−|2, (C 13)

and

dAσ

dT
= −ε−1Re

−1/2
dσ Aσ + 2C̃σ |a+| |a−| cosψ + ε−1Re

−1/2
(Γ +

σ |a+|2 + Γ −
σ |a−|2),

(C 14)

where ψ = ψ+ − ψ− represents the difference in phases of the two primary modes.
Terms on the right-hand sides of (C 8)–(C 14) may be interpreted as for the
axisymmetric case.

A number of analytical results, similar to those obtained earlier for axisymmetric
primary modes, can be derived. As for the axisymmetric case, in the absence of
viscosity, the system (C 11)–(C 14) is integrable and the solution is either periodic or
homoclinic to a fixed point. Starting from the linear regime of infinitesimal amplitudes,
the perturbation grows when the basic flow is unstable, reaches a maximum and
decays back to zero, behaviour which again illustrates the singular nature of the
inviscid problem. Non-zero fixed points of (C 11)–(C 14) may be determined as for
the axisymmetric case, with similar results. The phase difference is given by cos ψ =
−sgn(C)εc/ε, so such fixed points can only exist if ε � εc, where, as in Part 1,
εc = (−dr

+dr
−/ω+ω−Re C2)1/2 is the critical piston amplitude from linear theory. The

amplitudes |a+| and |a−| both vary with piston frequency in the manner of figure 4,
forming parabolas which branch out from the ends of the linear instability interval
|∆̂| < ∆0. As before, the lower branch is always unstable, whereas the upper branch
is stable near its bifurcation from the basic flow, but may lose stability elsewhere.
Note that these branches do not represent fixed points in the sense that neither a+ or
a− need individually be constant. Instead, ψ+ and ψ− are linear functions of T whose
difference is constant. It can be shown that a steadily rotating frame of reference
(neither the inertial frame, nor the one rotating with the cylinder) can be found in
which the flow field resulting from the fixed point is periodic and phase-locked to
the piston motion with twice the piston period. Finally, assuming, as before, that
divergence is accompanied by ψ → ψ∞, it may be shown that divergence is only
possible above a threshold piston amplitude, εd , dependent on Re, h0 and the choice
of primary mode pair and which may be infinite (in which case divergence cannot
occur no matter what the values of ε and ∆̂).
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Further progress would require calculation of the nonlinear coefficients in (C 13)
and (C 14), a task we have not so far undertaken because of the amount of analytical
and numerical work it would appear to entail. Nonetheless, we did carry out a
numerical study (see Racz 2006) based on (C 11)–(C 13) without the geostrophic term.
By rescaling |a+|, |a−| and T , the number of constants appearing in the equations can
be reduced to four, which were taken as the controlling parameters of the problem,
rather than the physical ones Re, h0, ∆̂ and ε. Depending upon the parameters and
initial conditions, either a fixed point, periodic or aperiodic oscillations, or divergence
were found at large times. This may be contrasted with the axisymmetric case, for
which neglecting the effects of the geostrophic flow on the primary mode always leads
to a fixed point. This is not to say that the geostrophic modes are unimportant in the
non-axisymmetric case, indeed they obviously ought to be included, but the dynamics
are already as rich without them as they are likely to become with their inclusion.
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